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Abstract—Pain is an internal sensation intricately intertwined
with individual affect states resulting in a varied expressive be-
haviors multimodally. Past research have indicated that emotion
is an important factor in shaping one’s painful experiences and
behavioral expressions. In this work, we present a study into un-
derstanding the relationship between individual emotional states
and self-reported pain-levels. The analyses show that there is a
significant correlation between observed valence state of an in-
dividual and his/her own self-reported pain-levels. Furthermore,
we propose an emotion-enriched multitask network (EEMN) to
improve self-reported pain-level recognition by leveraging the
rated emotional states using multimodal expressions computed
from face and speech. Our framework achieves accuracy of
70.1% and 52.1% in binary and ternary classes classification.
The method improves a relative of 6.6% and 13% over previous
work on the same dataset. Further, our analyses not only show
that an individual’s valence state is negatively correlated to the
pain-level reported, but also reveal that asking observers to rate
valence attribute could be related more to the self-reported pain
than to rate directly on the pain intensity itself.

I. INTRODUCTION

Pain is a subjective internal sensation that is closely as-
sociated with bodily damages or physical illnesses. There
are numerous factors affecting the intensity of one’s painful
episodes, e.g., memories or experiences of previous pain,
social cultural background, expectations and attitudes towards
pain, age, gender, race, even emotional or psychological state
[1], [2], [3]. Since emotional experiences are often connected
to the sensory processing regions in the brain, understanding
the relationships between pain and emotion have received
increased attention. For example, Carter et al. proposes that
self-reported pain-levels is related to the depression condition,
i.e., subjects who are in the anxiety or depression condition
show reduced pain tolerance after being induced into negative
affect state [4]. Other study has also pointed out negative
emotion state is associated to an increase in the pain felt,
whereas positive state lowers pain [5].

While being a subjective internal sensation, quantitative
pain assessment is a critical component for providing effective
pain management and screening life-threatening patients in
clinical applications. While both self-report and observation-
based pain assessment instruments have been developed [6],

studies have demonstrated the self-reported numerical scale
(NRS) remains to be the most valid measure in clinical
practices [7], [8], [9]. However, evidences have indicated the
measure not only suffers from inconsistent administration in
clinical practices, but limits the large-scale applicability of
pain assessment for healthcare applications [10].
With the advancements in machine learning and signal

processing techniques, researchers have started to develop al-
gorithms to automate the pain-level assessment. For example,
Rodriguez et al. proposes a long short term memory (LSTM)
network to estimate individual pain-level using facial images
[11], Tavakolian et al. develops a deep convolutional neural
network (CNN) architecture that integrates low-level visual
descriptors and high-level structural information to estimate
pain intensity [12], and Egede et al. performs pain-level
recognition by using both hand-crafted facial features and deep
neural features on images [13]. Furthermore, our recent works
have focused on modeling speech acoustic information in a
real patient’s triage corpus [14]. Tsai et al. uses bottleneck
LSTM on prosodic cues to perform pain recognition on subset
of this triage corpus [15], and Li et al. further extends the
framework to the entire corpus by incorporating age and
gender attributes into variational acoustic network [16]. Most
of these past works focus on learning to map behavior cues to
self-reported NRS, there is yet a systematic modeling between
the relationship of affect states and self-reported pain-levels.
In this work, we present a computational study to investi-

gate the relationship between observed affect states and self-
reported pain-levels. We recruited five evaluators to assess the
scale of emotion primitives (activation and valence) and the
observed pain-level for each sample in our triage multimodal
pain database. Our analysis demonstrates that the observed
valence attribute is negatively correlated to the self-reported
pain-levels (� = −0.5136) corroborating past literature [17].
Furthermore, we develop an emotion-enriched multitask net-
work (EEMN), which aims at improving self-reported NRS
classification by jointly optimizing with affect states using
multimodal behavior data (acoustic and facial expressions).
Our EEMN framework achieves a 70.1% unweighted accuracy
in classifying extreme set (mild versus severe) and 52.1%
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Fig. 1. It shows the complete architecture of our emotion-enriched multitask network (EEMN) used for automatic pain-level recognition: acoustic and facial
feature extraction, training multitask network with NRS pain-levels as main task and affect state as auxiliary task, performing multimodal fusion with embeddings
from EEMN using support vector classifier.

in classifying three-class classification (mild, moderate and
severe). Further analysis reveals an interesting insight that in
two of the five evaluators, their ratings on the patient’s valence
attribute are more in concordance with the patient’s NRS
score than their own observational assessment of patient’s pain
intensity. The rest of paper is organized as follows: Section 2
describes the database, behavior features and emotion-enriched
multitask network. Section 3 includes experimental setups,
analyses and results. Section 4 concludes with future work.

II. RESEARCH METHODOLOGY

A. Triage Pain-Level Multimodal Database
The Triage Pain-Level Multimodal Database was collected

at the Emergency Department of Chang Gung Memorial
Hospital during triage sessions for on-boarding patients [14].
The data includes audio-video recordings, vital sign, and
other clinically-related outcomes. We include patients with
symptoms of chest, abdominal, lower-back, limbic pain and
headaches. Each triage session lasts approximately 30 seconds
where the nurse asks each patient about the pain location, the
NRS scale of pain intensity (0-10, where 10 means the worst
pain ever), and a brief description on the type of pain felt.
In this work, we use a total of 323 samples from 184 unique
patients, i.e., the same setting as the most recent work on this
corpus [16]. We categorize the NRS into three commonly-used
pain-levels, i.e., mild (0-3), moderate (4-6), and severe (7-10).

1) Observer Annotations: In this work, in order to inves-
tigate the relationship between the observed emotional states
and the self-reported pain-levels, we recruit five naive raters (2
males, 3 females) to annotate the emotional states and also the
perceived pain-levels of these patients by viewing the recorded
sample audio-visually. Since the patient’s self-reported pain-
levels were also recorded, we first mask the NRS answering

TABLE I
INTER-EVALUATOR AGREEMENT FROM FIVE EVALUATORS USING

ENTROPY-BASED METRIC.

Act Val OV
E1 ♂ 0.0921 0.0256 0.0712
E2 ♂ 0.0187 0.1007 0.0156
E3 ♀ 0.0300 0.0260 0.1867
E4 ♀ 0.0339 0.0404 0.0323
E5 ♀ 0.1339 0.0298 0.0516

portion of each video sample to ensure that the raters would
not be influenced by the patient’s own answer. Raters annotate
the affective states, i.e., activation and valence using a 5-
level discretized scale between -2 to 2, and also indicate their
perception on the patient’s pain-level as one of the four classes,
i.e., no pain (0), mild (1-3), moderate (4-6), and severe (7-10).
The inter-evaluator agreements obtained between the five

annotators on activation (Act), valence (Val), and observed
(OV) pain-levels are shown in Table I. In this work, we
adopt the use of entropy-based metric proposed by Steidl et
al. in measuring the inter-evaluator agreement [18]. The idea
is to measure the amount of uncertainty when including the
annotator as a new rater into the current rating pool. Specially,
assume a probability distribution p with evaluations gathered
from n existing raters. When a new rater is added, we estimate
a new distribution p̄. The inter-evaluator agreement of this rater
with others is computed using the following equation:

Sent = H(p̄) −H(p) = −(
∑

p̄ ⋅ logp̄ +
∑

p ⋅ logp) (1)

The lower the Sent indicates a higher agreement level. In
general, we notice that our evaluators tend to be in agreement
with each other across the three different annotations. Only for
the third annotator, when rating the observed pain-level, her
rating shows a much larger disagreement with other annotators.
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B. Emotion-Enriched Multitask Network (EEMN)

In this work, we further design a multitask network that
learns an improved multimodal pain-affect representation
to perform pain-level classification. Figure 1 depicts our
Emotion-Enriched Multitask Network (EEMN) that models
acoustic and facial expressions by using pain as the main task
and emotion state as an auxiliary task. In the following section,
we will detail the audio-video feature extraction, our proposed
network and final pain classification.

1) Acoustic Features: We extract acoustic features on the
patient’s speaking portion for each recording sample using the
eGeMAPS feature set [19]. It includes a set of 88 features
covering a various statistical properties of spectral, cepstral,
prosodic, and voice quality information extracted using the
openSMILE toolkit [20].

2) Facial Low-level Descriptors: Facial action units (AU)
have been known to be related to pain-level [21], and in
this work, we design 25 facial action unit-inspired descriptors
per frame characterizing eyes, mouth, eyebrows, and nose
movement (details in [14]). These features are extracted based
on the tracked 68 facial landmarks using method of con-
strained local neural fields (CLNF) [22]. We further compute
15 different statistical functionals on these extracted facial
LLDs to generate a feature vector for each sample. The list
of functionals includes maximum, minimum, mean, median,
standard deviation, 1st percentile, 99tℎ percentile, 99tℎ − 1st
percentile, skewness, kurtosis, minimum position, maximum
position, lower quartile, upper quartile, interquartile range.

3) Affect-Pain Multitask Architecture: We use an emotion-
enriched multitask network (EEMN) to learn a unified affect-
pain feature representation for pain-level classification. EEMN
architecture includes a typical hard-sharing layers at the be-
ginning and branches out with task-specific layers toward
the end [23]. In this work, the main task is the pain-level
classification where the auxiliary task is the emotional state
recognition. We train a separate speech-EEMN and face-
EEMN. The embedding prior to the pain-level softmax layer
can be seen as behavior representation that captures emotion-
related information suitable for pain-level recognition.

The concatenation of vocal- and facial-embeddings derived
from the modality-specific EEMN is used as the multimodal
input to a linear-kernel support vector machine for final NRS
pain-level recognition.

III. EXPERIMENTAL SETUPS AND RESULTS

In this work, we set up two different experiments:
∙ Exp I: a correlation analysis between observed emotional
states and self-reported pain-level

∙ Exp II: NRS pain-level recognition tasks using EEMN
Exp I is designed to investigate the relationship between

emotional states and varying pain severity. Exp II is setup to
demonstrate the effectiveness of the EEMN to improve pain-
level recognition by integrating emotion-related information.

TABLE II
CORRELATIONS OF THE OBSERVED EMOTIONAL ATTRIBUTES WITH THE

SELF-REPORTED PAIN-LEVELS.

Activation (Act) Valence (Val)

Sp. � p Sp. � p

2-Class

E1 ♂ 0.3376 < 0.001 −0.3948 < 0.001
E2 ♂ −0.1079 > 0.001 −0.4433 < 0.001
E3 ♀ −0.1566 > 0.001 −0.5472 < 0.001
E4 ♀ 0.0192 > 0.001 −0.5336 < 0.001
E5 ♀ 0.0887 > 0.001 −0.4752 < 0.001
Mean 0.0208 > 0.001 −0.5136 < 0.001

3-Class

E1 ♂ 0.2847 < 0.001 −0.3312 < 0.001
E2 ♂ −0.094 > 0.001 −0.3771 < 0.001
E3 ♀ −0.1356 > 0.001 −0.4539 < 0.001
E4 ♀ 0.011 > 0.001 −0.4744 < 0.001
E5 ♀ 0.069 > 0.001 −0.3979 < 0.001
Mean 0.012 > 0.001 −0.4376 < 0.001

A. Exp I: Emotional States Analyses
We present spearman correlations computed between each

annotator’s (E*) rated valence (Val) and activation (Act) values
and the patient’s self-reported pain-level (2-class: mild (0) and
severe (1), or 3-class: mild (0), moderate (1), and severe (2)).
We further take the mean of the five annotators rated emotion
attributes to perform similar correlation computations.
1) Experimental Results: Table II summarizes the correla-

tions of the observed emotional states with the self-reported
pain-levels. Generally, we observe there is a significantly
negative correlation between the valence state and the severity
of the pain-level (mean: � = −0.5136 and � = −0.4376 for 2-
class and 3-class respectively). In fact, we observe a consistent
negative correlation between valence and pain intensity across
all of the five annotators. This finding suggesting that a more
negative emotion observed would correlate with a higher pain-
level reported corroborates with past literatures [17], [24],
[25]. This strong relationship does not hold for the activation.
On average, activation is not correlated with the NRS score;
the only significant correlation found is in the first evaluator,
where the more activated the patient is, the more severe the
pain experienced.
B. Exp II: NRS Pain-Level Recognition
In Exp II, we perform two different recognition setups: 1)

binary classification between the extreme pain-levels, i.e., mild
vs. severe pain, and 2) three-class classification, i.e., mild vs.
moderate vs. severe. Our EEMN network architecture contains
2 fully-connected layers to be our hard sharing layers, and the
number of task-specific layers for the main and auxiliary task
are selected between 2 to 6. The output layer (24 nodes for
speech and 32 nodes for face) is extracted as patients’ feature
representation with emotion-related information. All the batch
size are specified as 300 and the learning rate is chosen
between the range of 0.01 to 0.0001 using Adam optimizer.
1) Comparison Models: The following is the list of com-

parison models:
∙ STN: Model trained on the single main task of pain-level
recognition without emotion attribute.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

510



TABLE III
IT SUMMARIZES THE UNWEIGHTED AVERAGED RECALL (UAR) OBTAINED IN OUR PROPOSED PAIN-LEVEL RECOGNITION EXPERIMENT. STN INDICATES
REPRESENTATION DERIVED FROM FEED-FORWARD NEURAL NETWORK WITHOUT USING EMOTIONAL ATTRIBUTES AS AUXILIARY TASK. EEMN IS OUR

PROPOSED EMOTION-ENRICHED NETWORK, AND THE LETTERS AFTER EEMN INDICATES EITHER LEARNING WITH VALENCE (VAL) OR ACTIVATION (ACT) BY
USING SPEECH (S) OR FACE (F) BEHAVIORS.

Speech Face Multimodal

STN VAE
EEMN
Act

EEMN
Val

STN
EEMN
Act

EEMN
Val

STN
EEMN

Act(S)+Act(F)
EEMN

Act(S)+Val(F)
EEMN

Val(S)+Act(F)
EEMN

Val(S)+Val(F)
2-Class

Mild 65.2 66.0 70.4 65.2 71.3 76.5 73.0 64.3 75.7 75.7 69.5 67.0
Severe 60.8 61.0 51.0 66.7 51.0 52.9 57.8 62.7 52.9 56.9 70.6 62.7
UAR 63.0 63.5 60.7 65.9 61.1 64.7 65.4 63.5 64.3 66.3 70.1 64.9
3-Class

Mild 42.6 43.7 33.0 42.6 52.2 64.3 44.3 37.4 55.6 52.1 53.9 51.3
Moderate 40.5 35.4 38.7 54.7 42.4 41.5 41.5 47.2 37.7 38.7 61.3 58.5
Severe 36.3 38.1 41.2 45.0 17.6 38.2 42.2 39.2 43.1 37.2 41.2 37.2
UAR 39.8 39.1 37.6 47.4 37.4 48.0 42.7 41.2 45.5 42.7 52.1 49.0

∙ VAE [16] : Model trained on encoding acoustic LLDs
using variational learning with Maximum-Mean Discrep-
ancy criterion

∙ EEMN-X: Model trained on main task of pain-level and
auxiliary task of emotion X-attribute using a multitask
network, where X can be either activation (Act) or valence
(Val) attributes.

These feature representations are fed into our final classi-
fier of linear-kernel support vector machine. The evaluation
processes are done via leave-one-patient-out cross-validation.
Unweighted average recall (UAR) is used as evaluation metric.

2) Experimental Results: Table III summarizes our self-
reported pain-level classification results. Our proposed
emotion-enriched multitask network achieves the best recog-
nition rates of 70.1% and 52.1% in 2-class and 3-class classifi-
cation in our multimodal fusion model of EEMN-Act (F) and
EEMN-Val (S). It obtains a relative improvement of 6.6% and
10.9% over the baseline multimodal STN without integrating
the information about individual affective states. This results
also surpass the previous work on the same database using the
variational autoencoder approach [16], specifically improves
6.6% and 13% in 2-class and 3-class recognition task.

Generally, we observe that integrating valence as an aux-
iliary emotion recognition task, it would improve the overall
pain-level recognition rates for both speech and face modality.
However, an interesting observation that we notice is that
in the more challenging 3-class pain-level recognition, using
activation as auxiliary task help the face modality more than
using valence attribute (48.0% versus 42.7%). In fact our best
model is a fusion between valence-enriched acoustic network
with activation-enriched facial network, i.e., EEMN-Val (S)
and EEMN-Act (F). This may due to the fact that valence at-
tributes provides additional information in the acoustic features
given that acoustic behaviors alone generally capture activation
well already; activation on the other hand provides additional
modeling capacity for facial modality, where facial expressions
alone are known to capture valence dimensions reliably.

TABLE IV
IT SUMMARIZES THE UNWEIGHTED AVERAGED RECALL (UAR) OBTAINED

FROM OBSERVED PAIN-LEVELS (OV), VALENCE RATINGS (VAL), AND
ACTIVATION RATINGS (ACT) TO THE SELF-REPORTED NRS SCORE.

OV Act Val
E1 ♂ 47.2 44.2 44.5
E2 ♂ 46.6 31.6 47.0
E3 ♀ 63.3 33.9 49.9
E4 ♀ 47.9 33.6 52.0
E5 ♀ 53.6 33.6 47.6
Mean 51.7 35.4 48.2

3) Additional Analyses: With the strong relationship be-
tween the perceived valence annotation and the self-reported
pain intensity, we further compute the concordance rate of
each annotator’s observed pain-levels (OV) to the patient’s
self-reported NRS pain-levels. By binning the OVs into the
same three classes and emotion states also as three classes
(i.e., class 0: (-2, -1), class 1: 0, class 2 (1, 2) for activation,
and class 0: (1, 2), class 1: 0, class 2 (-1, -2) for valence),
we can use UAR to measure the concordance rate of each
observed annotation to the NRS pain-levels.
Table IV summarizes the results. The baseline chance

concordance rate is 33%. We notice that the observed pain-
levels (OV) while is generally most related to the NRS (mean
UAR is 51.7%) among the three attributes, its UAR is actually
worse than our best performing recognition model (fusion of
EEMN-Val (S) and EEMN-Act (F) obtains UAR of 52.1%).
It implies the possibility that by using computational methods
may indeed be able to model subject internal feelings, such
as pain, surpass human’s observation. We also observe an
interesting fact that for E2 and E4, their valence attributes
reveal more about the patient’s NRS than their rated observed
pain-levels (E2: 47.0% vs. 46.6%, E4: 52.0% vs. 47.9%). This
results seem to indicate an intriguing annotator’s perceptual
mechanism in rating pain versus emotion though these two
are supposedly distinct internal constructs.
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IV. CONCLUSIONS

In this work, we present a computational investigation into
understanding the relationship between the self-reported pain
versus the observed emotion state. Our analyses indicate that
perceived valence is correlated negatively to the self-reported
pain (NRS) intensity. We further propose a multi-task learning
framework (EEMN) to improve automated NRS recognition
by using observed emotion states as an auxiliary task. We
also observe that the use of automated method can surpass
pain-level ratings done by humans observations. Finally, our
analysis indicates a possibility that by asking observer to
evaluate valence ratings potentially carry more information
about the patient’s internal pain sensation than directly asking
to rate the pain. This may further help in mitigating the
inconsistency in the administration of NRS during triage,
where the triage nurse would often rate how painful the patient
is through observation when it becomes difficult to solicit
answers from the patients.

To our knowledge, this is one of the first study into the
relationship between pain and emotion states in a large real
patients audio-video recordings. Aside from continuing to
advance our technical framework in improving the recognition
rates of NRS, we would also investigate scientifically the
underlying mechanism of one’s painful sensation and emotion
states in modulating our multimodal behavior expressions.
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